Merge sort is a divide and conquer algorithm that was invented by John von Neumann in 1945. It is a comparison based sorting algorithm.
How it works:
- Divide the unsorted list into n sub-lists, each containing 1 element (a list of 1 element is considered sorted).
- Repeatedly merge sub-lists to produce new sorted sub-lists until there is only 1 sub-list remaining. This will be the sorted list.
|  | 
| Illustration | 
|  | 
| A Still version | 
CODE:
import java.util.*;public class MergerSort {    public static void main(String[] args)     {        //Unsorted array        Integer[] a = { 2, 6, 3, 5, 1 };                 //Call merge sort        mergeSort(a);                 //Check the output which is sorted array        System.out.println(Arrays.toString(a));    }    @SuppressWarnings("rawtypes")     public static Comparable[] mergeSort(Comparable[] list)     {        //If list is empty; no need to do anything        if (list.length <= 1) {            return list;        }                 //Split the array in half in two parts        Comparable[] first = new Comparable[list.length / 2];        Comparable[] second = new Comparable[list.length - first.length];        System.arraycopy(list, 0, first, 0, first.length);        System.arraycopy(list, first.length, second, 0, second.length);                 //Sort each half recursively        mergeSort(first);        mergeSort(second);                 //Merge both halves together, overwriting to original array        merge(first, second, list);        return list;    }         @SuppressWarnings({ "rawtypes", "unchecked" })     private static void merge(Comparable[] first, Comparable[] second, Comparable[] result)     {        //Index Position in first array - starting with first element        int iFirst = 0;                 //Index Position in second array - starting with first element        int iSecond = 0;                 //Index Position in merged array - starting with first position        int iMerged = 0;                 //Compare elements at iFirst and iSecond,         //and move smaller element at iMerged        while (iFirst < first.length && iSecond < second.length)         {            if (first[iFirst].compareTo(second[iSecond]) < 0)             {                result[iMerged] = first[iFirst];                iFirst++;            }             else            {                result[iMerged] = second[iSecond];                iSecond++;            }            iMerged++;        }        //copy remaining elements from both halves - each half will have already sorted elements        System.arraycopy(first, iFirst, result, iMerged, first.length - iFirst);        System.arraycopy(second, iSecond, result, iMerged, second.length - iSecond);    }}
Output:
Input Array :  [ 2, 6, 3, 5, 1, 1, 8 ]
Output Array : [ 1, 1, 2, 3, 5, 6, 8 ]
Input Array :  [ 12, 16, 333, 50, 1000, 5, 897, 1, 3, 66, 13 ]
Output Array : [ 1, 3, 5, 12, 13, 16, 50, 66, 333, 897, 1000 ]
____________________________________________________________________
Post your questions in the comments section.
